New Kinematic Parameters for Quantifying Irregularities in the Human and Humanoid Robot Gait
نویسندگان
چکیده
Gait patterns of humans and humanoid robots are often described by analysing changes in angular rotation of hip, knee and ankle joints during one gait cycle. Each joint displays specific behaviour and irregularities of the gait pattern could be detected by measuring displacements from the normal rotation curve, while small deviations of individual gait characteristics are usually not easily detected. In this paper, an advanced gait analysis method is proposed, which incorporates analysis of angular data and its derivations of hip, knee, and ankle joints, presented in the phase plane. The gait kinematics was measured using a system based on active markers and fast digital cameras. The experiment included measurements on thirty healthy, barefoot humans while walking on a treadmill. We also simulated types of irregular gait, by measurements on subjects wearing knee constraints. The new kinematic parameters which are introduced clearly indicated the discrepancy between normal, healthy gait trials and irregular gait trials. The proposed gait factor parameter is a valuable measure for the detection of irregularities in gait patterns of humans and humanoid robots.
منابع مشابه
Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملThe Design and Realization of a Gait Rehabilitation Training Robot with Body Supporting Mechanism
With the increasing number of people who have problems with their walking, a new type of gait rehabilitation training robot has been put forward and designed. In order to meet the requirements of the gait rehabilitation training, the whole mechanical structure and control system have been designed, and the model machine for gait rehabilitation training robot has been made. Using the human gait ...
متن کاملDynamics, Stability Analysis and Control of a Mammal-Like Octopod Robot Driven by Different Central Pattern Generators
In this paper, we studied numerically both kinematic and dynamic models of a biologically inspired mammal-like octopod robot walking with a tetrapod gait. Three different nonlinear oscillators were used to drive the robot’s legs working as central pattern generators. In addition, also a new, relatively simple and efficient model was proposed and investigated. The introduced model of the gait ge...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملControl of a Step Walking Combined to Arms Swinging for a Three Dimensional Humanoid Prototype
Problem statement: Present researches focus to make humanoid robots more and more autonomous so they can assist human in daily works like taking care of children, aged or disabled persons. In such social activities, the contemporary humanoid robots are expected to have human like morphology and gait. Studies on bipedal locomotion for humanoid robots are then part of the hottest topics in the fi...
متن کامل